Distance Analysis Measuring for Clustering using K-Means and Davies Bouldin Index Algorithm

نویسندگان

چکیده

The purpose of this research is to analyze mapping results in the form clusters formed using clustering method measures. This done determine connections that existing create. Some measurements used are mixed measurements, Bregman differences, and number (Mixed Euclidean Distance, Generalized Divergence, Squared Mahalanobis Distance). Distance measurement shall be applied on with primary school facilities Indonesia. Davies Bouldin Index (DBI) different from cluster test (k = 2-10) for each Measure. average DBI value type measure (mixed measure) numerical Distance) 0.54. (Bregman divergences) numeric (generalized IDivergence) 0.66. 0.77 (Squared From results, distance 2), namely 0.269, have best value.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Clustering Using Boosted Constrained k-Means Algorithm

This article proposes a constrained clustering algorithmwith competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learn...

متن کامل

Enhanced Clustering Based on K-means Clustering Algorithm and Proposed Genetic Algorithm with K-means Clustering

-In this paper targeted a variety of techniques, tactics and distinctive areas of the studies that are useful and marked because the crucial discipline of information mining technologies. The overall purpose of the system of statistics mining is to extract beneficial facts from a large set of information and changing it right into a shape that is comprehensible for in addition use. Clustering i...

متن کامل

خوشه‌بندی خودکار داده‌های مختلط با استفاده از الگوریتم ژنتیک

In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TEM Journal

سال: 2022

ISSN: ['2217-8333', '2217-8309']

DOI: https://doi.org/10.18421/tem114-55